Skip to main content

Time-weighted vector store retriever

This retriever uses a combination of semantic similarity and a time decay.

The algorithm for scoring them is:

semantic_similarity + (1.0 - decay_rate) ^ hours_passed

Notably, hours_passed refers to the hours passed since the object in the retriever was last accessed, not since it was created. This means that frequently accessed objects remain β€œfresh”.

from datetime import datetime, timedelta

import faiss
from langchain.retrievers import TimeWeightedVectorStoreRetriever
from langchain_community.docstore import InMemoryDocstore
from langchain_community.vectorstores import FAISS
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings

Low decay rate​

A low decay rate (in this, to be extreme, we will set it close to 0) means memories will be β€œremembered” for longer. A decay rate of 0 means memories never be forgotten, making this retriever equivalent to the vector lookup.

# Define your embedding model
embeddings_model = OpenAIEmbeddings()
# Initialize the vectorstore as empty
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
vectorstore = FAISS(embeddings_model, index, InMemoryDocstore({}), {})
retriever = TimeWeightedVectorStoreRetriever(
vectorstore=vectorstore, decay_rate=0.0000000000000000000000001, k=1
)
yesterday = datetime.now() - timedelta(days=1)
retriever.add_documents(
[Document(page_content="hello world", metadata={"last_accessed_at": yesterday})]
)
retriever.add_documents([Document(page_content="hello foo")])
['c3dcf671-3c0a-4273-9334-c4a913076bfa']
# "Hello World" is returned first because it is most salient, and the decay rate is close to 0., meaning it's still recent enough
retriever.invoke("hello world")
[Document(page_content='hello world', metadata={'last_accessed_at': datetime.datetime(2023, 12, 27, 15, 30, 18, 457125), 'created_at': datetime.datetime(2023, 12, 27, 15, 30, 8, 442662), 'buffer_idx': 0})]

High decay rate​

With a high decay rate (e.g., several 9’s), the recency score quickly goes to 0! If you set this all the way to 1, recency is 0 for all objects, once again making this equivalent to a vector lookup.

# Define your embedding model
embeddings_model = OpenAIEmbeddings()
# Initialize the vectorstore as empty
embedding_size = 1536
index = faiss.IndexFlatL2(embedding_size)
vectorstore = FAISS(embeddings_model, index, InMemoryDocstore({}), {})
retriever = TimeWeightedVectorStoreRetriever(
vectorstore=vectorstore, decay_rate=0.999, k=1
)
yesterday = datetime.now() - timedelta(days=1)
retriever.add_documents(
[Document(page_content="hello world", metadata={"last_accessed_at": yesterday})]
)
retriever.add_documents([Document(page_content="hello foo")])
['eb1c4c86-01a8-40e3-8393-9a927295a950']
# "Hello Foo" is returned first because "hello world" is mostly forgotten
retriever.invoke("hello world")
[Document(page_content='hello foo', metadata={'last_accessed_at': datetime.datetime(2023, 12, 27, 15, 30, 50, 57185), 'created_at': datetime.datetime(2023, 12, 27, 15, 30, 44, 720490), 'buffer_idx': 1})]

Virtual time​

Using some utils in LangChain, you can mock out the time component.

import datetime

from langchain.utils import mock_now
# Notice the last access time is that date time
with mock_now(datetime.datetime(2024, 2, 3, 10, 11)):
print(retriever.invoke("hello world"))
[Document(page_content='hello world', metadata={'last_accessed_at': MockDateTime(2024, 2, 3, 10, 11), 'created_at': datetime.datetime(2023, 12, 27, 15, 30, 44, 532941), 'buffer_idx': 0})]

Help us out by providing feedback on this documentation page: